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Abstract. The paper gives a new interpretation and a possible optimization of the well-
known k-means algorithm for searching for the locally optimal partition of the set A = {ai ∈
Rn : i = 1, . . . , m} ⊂ Rn which consists of k disjoint nonempty subsets π1, . . . , πk, 1 ≤ k ≤ m.
For this purpose, a new Divided k-means Algorithm was constructed as a limit case of the well-
known Smoothed k-means Algorithm. It is shown that the algorithm constructed in such way
coincides with the k-means algorithm if during the iterative procedure no data points appear in
the Voronoi diagram. If in the partition obtained by applying the Divided k-means Algorithm
there are data points lying in the Voronoi diagram, it is shown that the obtained result can be
improved further.
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1 Introduction

Clustering or grouping a data set into conceptually meaningful clusters is a well-studied problem
in recent literature, and it has practical importance in a wide variety of applications [4, 6, 11–
13, 19, 27].

Let I = {1, . . . , m} and J = {1, . . . , k}, 1 ≤ k ≤ m be the set of natural numbers. A
partition of the set A = {ai ∈ Rn : i = 1, . . . , m} ⊂ Rn into k disjoint subsets π1, . . . , πk,
1 ≤ k ≤ m, such that

k∪
i=1

πi = A, πi ∩ πj = ∅, i ̸= j, |πj | ≥ 1, j = 1, . . . , k, (1)

will be denoted by Π(A) = {π1, . . . , πk}, and the elements π1, . . . , πk of such partition are called
clusters in Rn.
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If d : Rn × Rn → R+, R+ = [0, +∞⟩ is some distance-like function (see e.g. [11, 13, 22, 25]),
then to each cluster πj ∈ Π we can associate its center cj defined by

cj = c(πj) := argmin
x∈conv(πj)

∑
ai∈πj

d(x, ai). (2)

In the sequel, a special and well-known least square distance-like function given by d(x, y) =
∥x − y∥2

2, x, y ∈ Rn will be used as a distance-like function.
If we define an objective function F : P(A, k) → R+ on the set of all partitions P(A, k) of

the set A containing k clusters by

F(Π) =
k∑

j=1

m∑
i=1

d(cj , ai),

then we can say that Π⋆ is an optimal k-partition if

F(Π⋆) = min
Π∈P(A,k)

F(Π). (3)

Conversely, for a given set of different points z1, . . . , zk ∈ Rn, applying the minimal distance
condition, we can define the partition Π = {π1, . . . , πk} of the set A in the following way:

πj = {a ∈ A : d(zj , a) ≤ d(zs, a), ∀s ∈ J}, j ∈ J, (4)

where one has to take care that every element of the set A occurs in one and only one cluster.
Therefore, the problem of finding an optimal partition of the set A can be reduced to the
following optimization problem

min
z1,...,zk∈Rn

F (z1, . . . , zk), F (z1, . . . , zk) =
m∑

i=1
min

1≤j≤k
d(zj , ai) =

m∑
i=1

k∑
j=1

w
(j)
i d(zj , ai), (5)

where F : Rkn → R+, and

w
(j)
i =

{
1, ai ∈ π(zj);
0, ai /∈ π(zj)

, j ∈ J, (6)

and for all i ∈ I it holds
k∑

j=1
w

(j)
i = 1. (7)

Optimization problems (3) and optimization problem (5) are equivalent [1, 20]. A global op-
timization problem (5) can also be found in literature as a center-based clustering problem or
k-means/k-median problem [7, 14, 18, 22]. Thereby the objective function F can have a great
number of independent variables (the number of clusters in the partition multiplied by the
dimension of data points (k · n)), it does not have to be either convex or differentiable and gen-
erally it may have several local minima. Therefore, this becomes a complex global optimization
problem [5, 9].
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In this paper, we will show a new interpretation of the well-known k-means algorithm. It is
also demonstrated how the obtained result can be improved further.

The paper is organized as follows. In the next section, two well-known algorithms for search-
ing for the locally optimal partition, i.e. the k-means algorithm and Smoothed k-means Algo-
rithm (smoka), are briefly described and a new Divided k-means Algorithm (DKM) is proposed.
In Section 3, some properties of the DKM algorithm and connection with the k-means algorithm
is shown. Finally, some conclusions are given in Section 4.

2 Algorithms for searching for the locally optimal partition

In this section, we will briefly show two well-known algorithms for searching for the locally
optimal partition, i.e. the k-means algorithm and smoka (see e.g. [11, 12, 20]), and propose a
new DKM algorithm.

2.1 k-means algorithm

There are various notation variants of this well-known algorithm (see e.g. [11, 14, 15]). For
further usage in this paper, the algorithm will be written in the following way.

Algorithm 1. (k-means algorithm)
Step 0: Input 1 ≤ k ≤ m; I = {1, . . . , m}; J = {1, . . . , k}; A = {ai ∈ Rn : i ∈ I}. Choose mutually

different points z1 . . . , zk ∈ conv(A).

Step 1: (Assignment step) Define clusters

π(zj) = {ai ∈ A : d(zj , ai) ≤ d(zs, ai), ∀s ∈ J}, j ∈ J,

where one has to take care that every element of the set A occurs in one and only one cluster.
Define weights w

(j)
i according to (6) and (7);

Calculate F0 =
k∑

j=1

(
m∑

i=1
w

(j)
i d(zj , ai)

)
.

Step 2: (Update step) Determine

cj = argmin
x∈Rn

m∑
i=1

w
(j)
i d(x, ai) = 1

m∑
l=1

w
(j)
l

m∑
i=1

w
(j)
i ai, j ∈ J ; (8)

π(cj) = {ai ∈ A : d(cj , a) ≤ d(cs, a), ∀s ∈ J}, j ∈ J ;

Define new weights

w
(j)
i =

{
1, ai ∈ π(cj);
0, ai /∈ π(cj)

, j ∈ J, such that
k∑

j=1
w

(j)
i = 1;

Calculate F1 =
k∑

j=1

(
m∑

i=1
w

(j)
i d(cj , ai)

)
.

Step 3: If F1 < F0, set F0 = F1 and go to Step 2.
Else set c⋆

j = cj , ∀j ∈ J and STOP.
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Points z1 . . . , zk from Step 1 and points c1, . . . , ck from Step 2 are called assignment points
and centroids of the clusters, respectively. Centroids in Step 2 become assignment points on the
basis of which we define new clusters.

Algorithm 1 is finite and in every step it reduces the value of the objective function. Cen-
troids (c⋆

1, . . . , c⋆
k) obtained by applying Algorithm 1 are called locally optimal centroids, and the

corresponding partition {π1, . . . , πk} is called a locally optimal partition.
In addition to that, it may happen that one of clusters becomes an empty set [11]. In relation

to that, [21] gives a sufficient condition under which functional (5) attains its local minimum at
the point (c⋆

1, . . . , c⋆
k). A partition determined by this point is called a stable partition [11, 22, 27].

Also, in accordance with [21], a stable partition does not contain empty clusters.

2.2 smoka

The smoka algorithm has appeared relatively recently in literature as a natural generalization
of the well-known Weiszfeld algorithm for the Fermat–Weber location problem (see e.g. [2, 8]).
In the sequel, we will briefly describe this algorithm and give its most important properties.
Consider the optimization problem

min
z1,...,zk∈Rn

F (z1, . . . , zk), F (z1, . . . , zk) =
m∑

i=1
min

1≤j≤k
d(zj , ai). (9)

Since for every vector r = (r1, . . . , rn) ∈ Rn holds (see e.g. [11])

max
1≤j≤k

rj = lim
ϵ→0+

ϵ ln
n∑

j=1
exp

(
rj

ϵ

)
,

and min
1≤j≤k

rj = − max
1≤j≤k

(−rj), functional (9) can be approximated by

Fϵ(z1, . . . , zk) = −
m∑

i=1
ϵ ln

k∑
j=1

e−
d(zj ,ai)

ϵ , (10)

and instead of solving the non-differentiable optimization problem (9), we can solve the following
differentiable optimization problem (see [11, 22])

min
z1,...,zk∈Rn

Fϵ(z1, . . . , zk). (11)

Let us note that θ̂ := (ĉ1, . . . , ĉk) ∈ Rnk is a stationary point of the functional Fϵ if and only
if for every j ∈ J holds

ĉj = 1∑m
l=1 ω

(j)
l (ϵ)

m∑
i=1

ω
(j)
i (ϵ)ai, where ω

(j)
i (ϵ) = e−

d(ĉj ,ai)
ϵ

k∑
s=1

e− d(ĉs,ai)
ϵ

, i ∈ I, j ∈ J. (12)
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Therefore, the stationary point θ̂ := (ĉ1, . . . , ĉk) ∈ Rnk of the functional Fϵ can be searched for
by the following iterative procedure

c
(t+1)
j = 1

m∑
l=1

ω
(j)
l (ϵ)

m∑
i=1

ω
(j)
i (ϵ)ai, where ω

(j)
i (ϵ) = e−

d(c
(t)
j

,ai)

ϵ

k∑
s=1

e− d(c
(t)
s ,ai)

ϵ

, t = 0, 1, . . . , (13)

whereby θ(0) = (c(0)
1 , . . . , c

(0)
k ) ∈ Rnk is some initial approximation – initial assignment points.

In every step, iterative procedure (13) determines the next approximation of the j-th component
of vectors of centers θ as a weighted arithmetic mean of data ai ∈ A with weights ω

(j)
i (ϵ). In

literature, this iterative procedure is called the smoka algorithm [11, 12].
From the construction it can be seen that this algorithm is numerically very demanding and

practically it cannot compete with the k-means algorithm.
The properties of iterative procedure (13) are given in [11, 22], and sufficient conditions

under which functional Fϵ in the stationary point attains its local minimum are given in [21].
Specially, in [18], this problem is considered for an l1-metric function.

2.3 Divided k-means Algorithm

In this section, we will analyze properties of weighted functions ϵ 7→ ω
(j)
i (ϵ), i ∈ I, j ∈ J used

in iterative procedure (13) and define a new algorithm for searching for the locally optimal
partition.

Suppose we are given a set of data A and a set of mutually different assignment points
z1, . . . , zk. As already mentioned in Section 2.2, the smoka algorithm is determined by iterative
procedure (13), which in every step of the given assignment points defines new centers as weighted
arithmetical means of data ai ∈ A with weights ω

(j)
i (ϵ) given by

ω
(j)
i (ϵ) = e−

d(zj ,ai)
ϵ

k∑
s=1

e− d(zs,ai)
ϵ

, i ∈ I, j ∈ J. (14)

Note that weights (14) satisfy the following simple properties:

0 < ω
(j)
i (ϵ) < 1, (15)

k∑
j=1

ω
(j)
i (ϵ) = 1. (16)

Specially, if k = |J | = 1, then ω
(1)
i (ϵ) = 1 for every i ∈ I.

Furthermore, for every ai ∈ A define a set of indexes of the nearest assignment points

Ui = {j ∈ J : d(zj , ai) ≤ d(zs, ai), ∀s ∈ J}. (17)

Note that the set Ui is unempty, and that it can be a single member set (if ai /∈ V [z1, . . . , zk]) or
a multi-member set (if ai ∈ V [z1, . . . , zk]). If for every ai ∈ A the set Ui is a single member set,
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then a corresponding partition Π = {π(z1), . . . , π(zk)} is said to be a well-separated partition,
i.e. the partition Π is said to be a well-separated partition if and only if the following holds

(∀ai ∈ A)(∃j ∈ J) d(zj , ai) < d(zs, ai), ∀ s ∈ J \ {j}. (18)

Remark 1. Let ϵM be the machine epsilon number (see e.g. [3]). The set Ui defined by (17) can
be determined as follows

Ui = ∅; dmin := min
s∈J

d(zs, ai);

For j = 1, . . . , k

∆j := (d(zj , ai) − dmin);

If ∆j < ϕ(ϵM ),

Ui = Ui ∪ {j};

where ϕ(ϵM ) is a calculation error due to machine precision.

Lemma 1. Let A = {ai : i ∈ I} be a set of data points, and z1, . . . , zk, k > 1, a set of assignment
points. Let Ui, |Ui| = µi ≤ k be the set of indices associated to element ai ∈ A by (17).

(i) If µi < k, for functions given by (14) for every i ∈ I holds

v
(j)
i := lim

ϵ→0+
ω

(j)
i (ϵ) =

{ 1
µi

, if j ∈ Ui

0, if j ∈ J \ Ui,
(19)

∑
j∈Ui

v
(j)
i =

∑
j∈Ui

1
µi

= 1,

whereby functions ϵ 7→ ω
(r)
i (ϵ), r ∈ Ui are strictly monotonically decreasing on the interval

⟨0, +∞⟩;

(ii) If µi = k, then for every j ∈ J and every ϵ ∈ ⟨0, +∞⟩ functions ϵ 7→ ω
(j)
i (ϵ) = 1

k are
constants.

Proof. (i) Let us choose r ∈ Ui and denote function ϵ 7→ ω
(j)
i (ϵ) given by (14) as

ω
(j)
i (ϵ) =



1
µi+

∑
s∈J\Ui

e− 1
ϵ (d(zs,ai)−d(zr,ai)) if j ∈ Ui,

e
− 1

ϵ (d(zj ,ai)−d(zr,ai))
µi+

∑
s∈J\Ui

e− 1
ϵ (d(zs,ai)−d(zr,ai)) if j ∈ J \ Ui.

(20)

Since 1 < k < µi, it holds that J \ Ui ̸= ∅. Hence, in accordance with definition (17) of the
set Ui, for every r ∈ Ui and every s ∈ J \ Ui it holds that d(zs, ai) > d(zr, ai). Therefore, (19)
follows directly from (20).
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Further, for r ∈ Ui, the derivative of function ϵ 7→ ω
(r)
i (ϵ) given by (14) can be written as

d

dϵ

(
ω

(r)
i (ϵ)

)
= − 1

ϵ2 e− d(zr,ai)
ϵ

(
k∑

s=1
e− d(zs,ai)

ϵ

)−2 k∑
s=1

e− d(zs,ai)
ϵ (d(zs, ai) − d(zr, ai)) . (21)

Since d(zs, ai) > d(zr, ai) holds for every s ∈ J \Ui, from (21) it follows d
dϵ

(
ω

(r)
i (ϵ)

)
< 0. Hence,

functions ϵ 7→ ω
(r)
i (ϵ), ∀r ∈ Ui are strictly monotonically decreasing on the interval ⟨0, +∞⟩.

(ii) If µi = k, then the data ai is situated on the border of all clusters so that ω
(r)
i (ϵ) = 1

k

holds for every ϵ ∈ ⟨0, +∞⟩, from where follows the assertion.

Note that weights v
(j)
i defined by (19) in this way retain property (7), whereas property

w
(j)
i ∈ {0, 1}, i ∈ I, j ∈ J , relaxes into a more general form v

(j)
i ∈ {0, 1, 1

2 , . . . , 1
k } ⊂ [0, 1], i ∈

I, j ∈ J .
By modifying the k-means algorithm (Algorithm 1) such that weights w

(j)
i are redefined

according to (19), we obtain a new algorithm that will be called the Divided k-means Algorithm
(DKM). In this way, the effect will be such as if the data ai ∈ A that appeared in the Voronoi
diagram V [z1, . . . , zk] was evenly distributed to all clusters on whose borders it is located. If in
every step of the k-means algorithm no data ai ∈ A appear in the Voronoi diagram, then the
DKM algorithm becomes a common k-means algorithm. Similarly to the k-means algorithm,
such algorithm is finite and in every step it reduces the objective function value.

Algorithm 2. (Divided k-means Algorithm – DKM)
Step 0: Input 1 ≤ k ≤ m; I = {1, . . . , m}; J = {1, . . . , k}; A = {ai ∈ Rn : i ∈ I}.

Choose mutually different points z1 . . . , zk ∈ conv(A).

Step 1: (Assignment step)
For each j ∈ J define clusters π(zj) = {ai ∈ A : d(zj , ai) ≤ d(zs, ai), ∀s ∈ J}.
According to Remark 1, determine sets Ui, i ∈ I and according to (19) corresponding new
weights v

(j)
i .

Calculate F0 =
k∑

j=1

(
m∑

i=1
v

(j)
i d(zj , ai)

)
.

Step 2: (Update step) Determine centers of clusters

cj = argmin
x∈Rn

m∑
i=1

v
(j)
i d(x, a) = 1

m∑
l=1

v
(j)
l

m∑
i=1

v
(j)
i ai, j ∈ J. (22)

Define new clusters π(cj) = {ai ∈ A : d(cj , ai) ≤ d(cs, ai), ∀s ∈ J}, j ∈ J .
According to Remark 1, determine the sets Ui, i ∈ I and according to (19) corresponding new
weights v

(j)
i

Calculate F1 =
k∑

j=1

(
m∑

i=1
v

(j)
i d(cj , ai)

)
;

Step 3: If F1 < F0, set F0 = F1 and go to Step 2.
Else set c⋆

j = cj , ∀j ∈ J and STOP.
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It is obvious that
∑k

j=1 v
(j)
i = 1 holds for every i ∈ I in Step 1 and Step 2.

In contrast to the common k-means algorithm, by stopping the DKM algorithm it is possible
to get a partition such that some elements lie on the border between two clusters, i.e. in the
Voronoi diagram.

Example 1. Given are the data points A = {a1, . . . , a8} ⊂ R2, where

A = {
(

57
10 , 57

10

)
, (3, 6),

(
133
30 , 43

30

)
, (7, 3), (9, 5),

(
280
30 , 203

30

)
, (4, 8),

(
173
30 , 263

30

)
}

and initial assignment points (see Fig. 1a),

c
(0)
1 = (4, 4), c

(0)
2 = (8, 5), c

(0)
3 = (5, 8).

According to (19), we associate the weights v
(1)
i , v

(2)
i , v

(3)
i to each data point ai ∈ A in the

following way (see Fig. 1a)

j\i 1 2 3 4 5 6 7 8
1 1/3 1 1 0 0 0 0 0
2 1/3 0 0 1 1 1 0 0
3 1/3 0 0 0 0 0 1 1

0 2 4 6 8

2

4

6

8

10

(a) Initial approximation

π1
π2

π3

a1

c
(0)
1

c
(0)
2

c
(0)
3

2 4 6 8

2

4

6

8

10

(b) Solution

π1
π2

π3

a1
c⋆

1

c⋆
2

c⋆
3

Figure 1: Divided k-means Algorithm

After two iterations of the DKM algorithm we obtain locally optimal centroids (see Fig. 1b).
The corresponding clusters will be denoted as pairs by elements of the set A with corresponding
weights

π1 = {(a1, 1
2), (a2, 1), (a3, 1)}, π2 = {(a4, 1), (a5, 1), (a6, 1)}, π3 = {(a1, 1

2), (a7, 1), (a8, 1)}.

Note that the element a1 takes place in the Voronoi diagram of an optimal partition. The flow
of the iterative procedure is shown in Table 1.
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c
(t)
1 c

(t)
2 c

(t)
3 F (c(t)

1 , c
(t)
2 , c

(t)
3 )

t=0 (4,4) (8,5) (5,8) 30.6300
t=1 (4,4) (8.17,5) (5,8) 30.5337
t=2 (4.1133, 4.1133) (8.4444, 4.9222) (5.0467, 7.8467) 29.8908

Table 1: Iterative procedure

3 Properties of the DKM algorithm and connection with the
k-means algorithm

Suppose that by applying the DKM algorithm we obtained centroids c⋆
1, . . . , c⋆

k, whereby there
exists element ai0 ∈ A lying in the Voronoi diagram V [c⋆

1, . . . , c⋆
k], like e.g. in Example 1. Let

us show that then the objective function value can be reduced such that by using the minimal
distance principle we define a partition Π̂ = {π̂1, . . . , π̂k} by which element ai0 is completely
associated to only one of the clusters on whose edge that element lies.

Theorem 1. Let A = {ai ∈ Rn : i ∈ I} be a set of data points, and let c⋆
1, . . . , c⋆

k ∈ Rn be the
centroids obtained by the DKM algorithm. Let Ui, |Ui| = µi ≤ k be the set of indices associated
to element ai ∈ A by (17).

If there exists i0 ∈ I, such that |Ui0 | > 1, then there exist ĉ1, . . . , ĉk ∈ Rn such that

F (ĉ1, . . . , ĉk) :=
m∑

i=1
min

1≤j≤k
d(ĉj , ai) ≤ F (c⋆

1, . . . , c⋆
k). (23)

Proof. Let us notice that for given c⋆
1, . . . , c⋆

k ∈ Rn and v
(j)
i ∈ [0, 1] given by (19), there always

exists w
(j)
i ∈ {0, 1},

∑k
j=1 w

(j)
i = 1, such that

F (c⋆
1, . . . , c⋆

k) =
m∑

i=1

k∑
j=1

v
(j)
i d(c⋆

j , ai) ≥
m∑

i=1
min

1≤j≤k
d(c⋆

j , ai)

=
m∑

i=1

k∑
j=1

w
(j)
i d(c⋆

j , ai)

≥
k∑

j=1

(
min
x∈Rn

m∑
i=1

w
(j)
i d(x, ai)

)

=
m∑

i=1

k∑
j=1

w
(j)
i d(ĉj , ai) = F̂ (ĉ1, . . . , ĉk),

whereby

ĉj = argmin
x∈Rn

m∑
i=1

w
(j)
i d(x, ai), j ∈ J.
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The following example shows how a better locally optimal partition can be found by means
of an improved DKM algorithm based upon Theorem 1 in relation to a locally optimal partition
obtained by the k-means algorithm.

Example 2. By applying the DKM algorithm to the data from Example 1 we gave a locally
optimal partition

π1 = {(a1, 1
2), (a2, 1), (a3, 1)}, π2 = {(a4, 1), (a5, 1), (a6, 1)}, π3 = {(a1, 1

2), (a7, 1), (a8, 1)},

whereby element a1, that appears in the Voronoi diagram, is divided into clusters π1 and π3 (see
Fig. 1b) attaining in this way the objective function value F ⋆ = 29.8908.

Centroids Objective function value

DKM (4.1133, 4.1133) (8.4444, 4.9222) (5.0467, 7.8467) 29.8908
Correction 1 (4.3778, 4.3778) (8.4444, 4.9222) (4.8833, 8.3833) 28.8419
Correction 2 (3.7167, 3.7167) (8.4444, 4.9222) (5.1556, 7.4889) 28.8419
k-means (3.7167, 3.7167) (7.7583, 5.1167) (4.8833, 8.3833) 29.6997

Table 2: Iterative procedure

If the element a1 is associated to the cluster π1, we obtain new centers ĉi and a smaller
objective function value of 28.8419. If the same element a1 is associated to the cluster π3, we
obtain new centroids c̃i and the same smaller objective function value 28.8419, as can be seen
in Table 2 and Fig. 2. Results obtained in such way are compared with results obtained by the
k-means algorithm. By the same initial assignment points c

(0)
i , the k-means algorithm gives a

weaker locally optimal partition (see Table 2)

π1 = {a2, a3}, π2 = {a1, a4, a5, a6}, π3 = {a7, a8},

with centroids c̄i (see Fig. 2c). Hence, application of the DKM algorithm, with corrections
according to Theorem 1, can give better results in comparison with the k-means algorithm.

Association of the data point a1 to the cluster π1 or π3, yields lower, but mutually equal
objective function values. The following sample example shows that the objective function value
can differ depending on the choice of a cluster to which the data point from the Voronoi diagram
is associated.

Example 3. Given are the data points A = {1, 2, 6, 11.4} ⊂ R. Partition

Π = {π1, π2}, π1 = {(1, 1), (2, 1), (6, 1
2)}, π2 = {(6, 1

2), (11.4, 1)},

is locally optimal in terms of the DKM algorithm, whereby the corresponding locally optimal
centroids are c∗

1 = 2.4 and c∗
2 = 8.6, and the objective function value is F ∗ = 18.32. If the data

point 6 is associated entirely to the cluster π1, we obtain new centroids ĉ1 = 3 and ĉ2 = 11.4
and the objective function value F̂ = 14. On the other hand, if the data point 6 is associated
entirely to the cluster π2, we obtain new centroids c̃1 = 1.5 and c̃2 = 8.7 and a higher objective
function value F̃ = 15.08.
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Figure 2: Locally optimal partitions

The DKM Algorithm could be modified and improved in that sense.

4 Conclusions

In this paper, we would like to point out the mathematical background of the well-known k-
means algorithm for searching for the locally optimal partition of the set A = {ai ∈ Rn : i =
1, . . . , m} ⊂ Rn. It has been shown that the k-means algorithm is directly connected with the
limit case of another well-known algorithm for searching for the locally optimal partition, i.e.
smoka. In this sense, a new DKM algorithm is constructed as a limit case of smoka, which differs
from the k-means algorithm only in case if during the iterative process some data points appear
in the Voronoi diagram. It has been shown that in this case the results can still be improved.
In this way, the DKM algorithm gives an improvement of the well-known k-means algorithm.

Taking into account that the smoka algorithm came into existence as a natural generalization
of the well-known Weiszfeld algorithm for solving the Fermat–Weber location problem [2, 8] for
the case of applying least squares distance-like functions, cases when some other distance-like
functions are applied could be treated in a similar way [13].
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